Combination of thermal fundamentals and Deep Learning for infrastructure inspections from thermographic images. Preliminary results

Autor: Susana Lagüela López, Q. Fang, Pedro Arias Sánchez, Iván Garrido González
Přispěvatelé: QIRT Council
Rok vydání: 2020
Předmět:
Zdroj: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
Popis: The application of Deep Learning (DL) models using the measurements acquired by Non-Destructive Testing (NTD) tools as input data stands as a versatile solution for highly automated analysis. However, DL models using thermal images as input data are quite scarce when it comes to analysing defects in medium- and large-scale bodies. Therefore, this paper proposes the application of a thermal criterion and a DL model, Mask R-CNN, in thermal images acquired from different infrastructures with thermal bridges and moisture. The thermal criterion is first applied to the input data, showing its utility to improve DL models performance Ministerio de Educación (España) | Ref. FPU16/03950
Databáze: OpenAIRE