Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium
Autor: | Thomas Wick, Mary F. Wheeler, Andro Mikelić |
---|---|
Přispěvatelé: | Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institute for Computational Engineering and Sciences [Austin] (ICES), University of Texas at Austin [Austin], Institute of Applied Mathematics, Leibniz Universität Hannover, Leibniz Universität Hannover [Hannover] (LUH) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Poromechanics
Mathematical analysis Linear elasticity Regular polygon 010103 numerical & computational mathematics 010502 geochemistry & geophysics 01 natural sciences Dirichlet distribution Physics::Geophysics symbols.namesake Modeling and Simulation Variational inequality symbols General Earth and Planetary Sciences Entropy (information theory) [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Boundary value problem 0101 mathematics ComputingMilieux_MISCELLANEOUS 0105 earth and related environmental sciences Energy functional Mathematics |
Zdroj: | GEM-International Journal on Geomathematics GEM-International Journal on Geomathematics, Springer, 2019, 10 (1), ⟨10.1007/s13137-019-0113-y⟩ |
ISSN: | 1869-2672 1869-2680 |
DOI: | 10.1007/s13137-019-0113-y⟩ |
Popis: | We study the propagation of hydraulic fractures using the fixed stress splitting method. The phase field approach is applied and we study the mechanics step involving displacement and phase field unknowns, with a given pressure. We present a detailed derivation of an incremental formulation of the phase field model for a hydraulic fracture in a poroelastic medium. The mathematical model represents a linear elasticity system with fading elastic moduli as the crack grows that is coupled with an elliptic variational inequality for the phase field variable. The convex constraint of the variational inequality assures the irreversibility and entropy compatibility of the crack formation. We establish existence of a minimizer of an energy functional of an incremental problem and convergence of a finite dimensional approximation. Moreover, we prove that the fracture remains small in the third direction in comparison to the first two principal directions. Computational results of benchmark problems are provided that demonstrate the effectiveness of this approach in treating fracture propagation. Another novelty is the treatment of the mechanics equation with mixed boundary conditions of Dirichlet and Neumann types. We finally notice that the corresponding pressure step was studied by the authors in Mikelic et al. (SIAM Multiscale Model Simul 13(1):367–398, 2015a). |
Databáze: | OpenAIRE |
Externí odkaz: |