A bending fluctuation-based mechanism for particle detection by ciliated structures

Autor: Lea-Laetitia Pontani, Jean-Baptiste Thomazo, Elie Wandersman, Alexis Prevost, Benjamin Le Révérend
Přispěvatelé: Laboratoire Jean Perrin (LJP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Nestlé Development Centre Lisieux, F-14100 Lisieux, France, Nestlé Research, CH-1000 Lausanne, Switzerland, Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Nestlé Research Center - Lausanne CH, Nestlé Suisse
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (31), pp.e2020402118. ⟨10.1073/pnas.2020402118⟩
Proc Natl Acad Sci U S A
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, ⟨10.1073/pnas.2020402118⟩
HAL
ISSN: 0027-8424
1091-6490
DOI: 10.1073/pnas.2020402118⟩
Popis: To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from direct contacts of the particles with the fiber and we propose a simple elastohydrodynamics model to predict their amplitude. Our results shed light on the extreme mechanical sensitivity of biological cilia to detect the presence of solid particles in their vicinity and bring a physical framework to describe their dynamics in particulate flows.
8 pages, 4 Figures, 1 Supplementary Material File
Databáze: OpenAIRE