Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide

Autor: Sarah R. McKibbin, Rainer Timm, Johan Knutsson, Andrea Troian, Samuli Urpelainen, Anders Mikkelsen, Olof Persson, Jan Knudsen, Ashley R. Head, Martin Hjort, Joachim Schnadt, Sofie Yngman
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
Nature Communications
ISSN: 2041-1723
DOI: 10.1038/s41467-018-03855-z
Popis: Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor–oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor–oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.
Atomic layer deposition of high-quality thin oxide layers is crucial for many modern semiconductor electronic devices. Here, the authors explore the surface chemistry during the initial deposition and observe a previously unknown two-step process, with promise for an improved self-cleaning effect.
Databáze: OpenAIRE