Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide
Autor: | Sarah R. McKibbin, Rainer Timm, Johan Knutsson, Andrea Troian, Samuli Urpelainen, Anders Mikkelsen, Olof Persson, Jan Knudsen, Ashley R. Head, Martin Hjort, Joachim Schnadt, Sofie Yngman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Materials science
Science Oxide General Physics and Astronomy 02 engineering and technology 01 natural sciences 7. Clean energy Chemical reaction General Biochemistry Genetics and Molecular Biology Article chemistry.chemical_compound Atomic layer deposition X-ray photoelectron spectroscopy 0103 physical sciences Deposition (phase transition) lcsh:Science Hafnium dioxide 010302 applied physics Multidisciplinary technology industry and agriculture General Chemistry 021001 nanoscience & nanotechnology chemistry Chemical engineering lcsh:Q Indium arsenide 0210 nano-technology Layer (electronics) |
Zdroj: | Nature Communications, Vol 9, Iss 1, Pp 1-9 (2018) Nature Communications |
ISSN: | 2041-1723 |
DOI: | 10.1038/s41467-018-03855-z |
Popis: | Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor–oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor–oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation. Atomic layer deposition of high-quality thin oxide layers is crucial for many modern semiconductor electronic devices. Here, the authors explore the surface chemistry during the initial deposition and observe a previously unknown two-step process, with promise for an improved self-cleaning effect. |
Databáze: | OpenAIRE |
Externí odkaz: |