Delaunay and Regular Triangulations as Lexicographic Optimal Chains
Autor: | David Cohen-Steiner, André Lieutier, Julien Vuillamy |
---|---|
Přispěvatelé: | Understanding the Shape of Data (DATASHAPE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria), Dassault Systèmes Provence |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Discrete and Computational Geometry Discrete and Computational Geometry, 2023, 70, ⟨10.1007/s00454-023-00485-1⟩ |
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-023-00485-1⟩ |
Popis: | International audience; We introduce a total order on n-simplices in the n-Euclidean space for which the support of the lexicographic-minimal chain with the convex hull boundary as boundary constraint is precisely the n-dimensional Delaunay triangulation, or in a more general setting, the regular triangulation of a set of weighted points. This new characterization of regular and Delaunay triangulations is motivated by its possible generalization to submanifold triangulations as well as the recent development of polynomial-time triangulation algorithms taking advantage of this order. |
Databáze: | OpenAIRE |
Externí odkaz: |