Quantum Critical Phenomena in a Compressible Displacive Ferroelectric
Autor: | Charles R. S. Haines, Matthew J. Coak, Siddharth S. Saxena, Gilbert G. Lonzarich, S. E. Rowley, Cheng Liu |
---|---|
Přispěvatelé: | Coak, Matthew [0000-0002-1015-8683], Haines, Charles [0000-0002-1274-8329], Liu, Cheng [0000-0002-3509-951X], Apollo - University of Cambridge Repository |
Rok vydání: | 2018 |
Předmět: |
Critical phenomena
FOS: Physical sciences Dielectric Superconductivity (cond-mat.supr-con) chemistry.chemical_compound Condensed Matter - Strongly Correlated Electrons Condensed Matter::Materials Science Quantum critical point Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Absolute zero Quantum Physics Condensed Matter - Materials Science Multidisciplinary Condensed matter physics Condensed Matter - Mesoscale and Nanoscale Physics Strongly Correlated Electrons (cond-mat.str-el) Condensed Matter - Superconductivity Materials Science (cond-mat.mtrl-sci) Ferroelectricity ferroelectricity Condensed Matter - Other Condensed Matter high pressure chemistry Ferromagnetism Physical Sciences Strontium titanate quantum criticality Other Condensed Matter (cond-mat.other) |
Zdroj: | Proc Natl Acad Sci U S A |
ISSN: | 2019-2215 |
DOI: | 10.48550/arxiv.1808.02428 |
Popis: | The dielectric and magnetic polarizations of quantum paraelectrics and paramagnetic materials have in many cases been found to initially increase with increasing thermal disorder and hence exhibit peaks as a function of temperature. A quantitative description of these examples of 'order-by-disorder' phenomenona has remained elusive in nearly ferromagnetic metals and in dielectrics on the border of displacive ferroelectric transitions. Here we present an experimental study of the evolution of the dielectric susceptibility peak as a function of pressure in the nearly ferroelectric material, strontium titanate, which reveals that the peak position collapses towards absolute zero as the ferroelectric quantum critical point is approached. We show that this behaviour can be described in detail without the use of adjustable parameters in terms of the Larkin-Khmelnitskii-Shneerson-Rechester (LKSR) theory, first introduced nearly 50 years ago, of the hybridization of polar and acoustic modes in quantum paraelectrics, in contrast to alternative models that have been proposed. Our study allows us to construct for the first time a detailed temperature-pressure phase diagram of a material on the border of a ferroelectric quantum critical point comprising ferroelectric, quantum critical paraelectric and hybridized polar-acoustic regimes. Furthermore, at the lowest temperatures, below the susceptibility maximum, we observe a new regime characterized by a linear temperature dependence of the inverse susceptibility that differs sharply from the quartic temperature dependence predicted by the LKSR theory. We find that this non-LKSR low temperature regime cannot be accounted for in terms of any detailed model reported in the literature, and its interpretation poses a new empirical and conceptual challenge. Comment: Published in the Proceedings of the National Academy of Sciences, May 2020, 201922151 |
Databáze: | OpenAIRE |
Externí odkaz: |