The effects of soil phosphorous content on microbiota are driven by the plant phosphate starvation response

Autor: Corbin D. Jones, Stijn Spaepen, Paulo José Pereira Lima Teixeira, Jeffery L. Dangl, Theresa F. Law, Omri M. Finkel, Gabriel Castrillo, Isai Salas-González
Rok vydání: 2019
Předmět:
DOI: 10.1101/608133
Popis: Phosphate starvation response (PSR) in non-mycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms – the plant microbiota – are exposed to direct influence by the soil’s phosphorous (P) content itself, as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient, and compared the composition of their shoot and root microbiota to wild type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota composition than P concentrations in both roots and shoots. The fungal microbiota was more sensitive to P concentrationsper sethan bacteria, and less depended on the soil community composition.Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift is accompanied by changes in microbiota composition: the genusBurkholderiais specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrate that in the absence ofBurkholderiafrom the SynCom, plant shoots accumulate higher phosphate levels than shoots colonized with the full SynCom, only under P starvation, but not under P-replete conditions. Therefore, P-stressed plants allow colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant’s P starvation.
Databáze: OpenAIRE