Optimization of Systems Repair Plans and Assessment of the Useful Life of Nuclear Power Plant Equipment
Autor: | Hennadii H. Krol, Leonid I. Zevin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Optimization problem
nuclear power plant Computer science power unit 0211 other engineering and technologies 020101 civil engineering 02 engineering and technology system repair plan 0201 civil engineering law.invention law Nuclear power plant TJ1-1570 Production (economics) Mechanical engineering and machinery Duration (project management) Reliability (statistics) 021103 operations research business.industry Volume (computing) Nuclear power Reliability engineering useful life Permissible Value business optimization |
Zdroj: | Journal of Mechanical Engineering, Vol 23, Iss 4, Pp 72-78 (2020) |
ISSN: | 2709-2992 2709-2984 |
Popis: | This paper presents a computer-aided method of planning the volumes of repairs of systems of nuclear power units and a method for calculating their gamma-percentile life. This planning is carried out on the basis of predicting the reliability indicator, the probability of no-failure operation for a certain time period, with the gamma-percentile life of the equipment being determined by solving the corresponding equations. The tasks considered are related to an important energy problem of extending the operation of nuclear power units. Its importance is determined mainly by economic feasibility: it is cheaper to assess the useful life of a nuclear power unit and, on this research basis, extend its operation, than create a new unit. It is also shown that the calculation of the probability of a radiation accident at a nuclear power unit is associated with the results of planning the repairs of its systems, with assessment of its useful life. An optimization problem is formulated: it is required to find such a plan for the volumes of repair of a system that, with limited repair costs, its reliability indicator for a given duration deviates least from the maximum permissible value. The solution to the problem is based on calculating the structural reliability of the system. A graphological image of the system is built in the form of a composition of graphological images of typical structures. After the reliability indicator of typical structures has been calculated, the structures are replaced with individual structural elements, which makes it possible to simplify the initial graphological image of the system in a computational scenario and calculate its reliability indicator. The determination of the repair volume is carried out by applying a version of the coordinate-wise optimization method. To assess the gamma-percentile life, a model is adopted, in which the recoverable equipment components have an unlimited life, although, of course, they "age", and the non-recoverable components spend their life up to the level when their replacement becomes conditioned by the violation of the requirement for the maximum permissible value of the system reliability indicator. Estimates of the gamma-percentile life of the equipment are calculated by planning system repairs on a sequence of intervals of annual energy production by a nuclear power unit. |
Databáze: | OpenAIRE |
Externí odkaz: |