On a conjecture of Gross, Mansour and Tucker

Autor: Fabien Vignes-Tourneret, Sergei Chmutov
Přispěvatelé: Mathematics Department, The Ohio State University, Ohio State University [Columbus] (OSU), Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: European Journal of Combinatorics
European Journal of Combinatorics, Elsevier, 2021, 97, pp.103368. ⟨10.1016/j.ejc.2021.103368⟩
ISSN: 0195-6698
1095-9971
DOI: 10.1016/j.ejc.2021.103368⟩
Popis: International audience; Partial duality is a duality of ribbon graphs relative to a subset of their edges generalizing the classical Euler-Poincaré duality. This operation often changes the genus. Recently J. L. Gross, T. Mansour, and T. W. Tucker formulated a conjecture that for any ribbon graph different from plane trees and their partial duals, there is a subset of edges partial duality relative to which does change the genus. A family of counterexamples was found by Qi Yan and Xian'an Jin. In this note we prove that essentially these are the only counterexamples.
Databáze: OpenAIRE