Ring and module structures on $K$-theory of leaf spaces and their application to longitudinal index theory

Autor: Christopher Wulff
Rok vydání: 2015
Předmět:
Zdroj: Journal of Topology
DOI: 10.48550/arxiv.1510.04470
Popis: Pursuing conjectures of John Roe, we use the stable Higson corona of foliated cones to construct a new $K$-theory model for the leaf space of a foliation. This new $K$-theory model is -- in contrast to Alain Connes' $K$-theory model -- a ring. We show that Connes' $K$-theory model is a module over this ring and develop an interpretation of the module multiplication in terms of indices of twisted longitudinally elliptic operators.
Comment: Accepted for publication by the Journal of Topology
Databáze: OpenAIRE