Popis: |
Evolution of genome sequencing technology, on the one hand, and advancement of computational genome mining tools, on the other hand, paves way for improvement in predicting secondary metabolites. In past, numerous efforts were made concerning genome mining for recognizing secondary metabolites within the genus, but only a negligible quantity of comparative genomic reports had carried out among species of different genera. In this study, we explored potential of 24 actinobacteria species belonging to the genera, including Streptomyces, Nocardia, Micromonospora, and Saccharomonospora, to traverse diversity and distribution of Biosynthetic Gene Clusters (BGCs). Investigating results obtained from antiSMASH (Antibiotics and Secondary Metabolites Analysis Shell), NaPDoS (Natural Product Domain Seeker), and NP.searcher revealed conservation of genus-specific gene clusters among various species. E.g., NAGGN (n-acetyl glutaminyl glutamine amide) is present in Micromonospora, furan in Nocardia, melanin, and lassopeptide occur in Streptomyces. Bioactive compounds like alkyl-O-dihydro geranyl methoxy hydroquinone, SapB, desferrioxamine E, 2-Methylisoborneol, mayamycin, cyclodipeptide synthase, diisonitrile, salinichelin, hopene, ectoine and isorenieratene are highly conserved among diverse genera. Furthermore, pharmacological activity of actinobacterial derived metabolites against bacterial and fungal pathogens were illustrated. We need to accomplish large-scale analysis of natural products, including various genera of actinobacteria to deliver comprehensive intuition to overcome antibiotic resistance. |