Combinatorial Maps for 2D and 3D Image Segmentation
Autor: | Alexandre Dupas, Guillaume Damiand |
---|---|
Přispěvatelé: | Geometry Processing and Constrained Optimization (M2DisCo), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Computer science
Segmentation-based object categorization ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Scale-space segmentation 0102 computer and information sciences 02 engineering and technology Image segmentation 01 natural sciences Partition (database) Minimum spanning tree-based segmentation Image texture 010201 computation theory & mathematics Region growing Computer Science::Computer Vision and Pattern Recognition 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Segmentation [INFO]Computer Science [cs] Algorithm Computer Science::Databases |
Zdroj: | Digital Geometry Algorithms Digital Geometry Algorithms, Springer, pp.359-393, 2012, ⟨10.1007/978-94-007-4174-4_12⟩ Digital Geometry Algorithms ISBN: 9789400741737 |
Popis: | International audience; This chapter shows how combinatorial maps can be used for 2D or 3D image segmentation. We start by introducing combinatorial maps and we show how they can be used to describe image partitions. Then, we present a generic segmentation algorithm that uses and modifies the image partition represented by a combinatorial map. One advantage of this algorithm is that one can mix different criteria and use different image features which can be associated with the cells of the partition. In particular, it is interesting that the topological properties of the image partition can be controlled through this approach. This property is illustrated by the computation of classical topological invariants, known as Betti numbers, which are then used to control the number of cavities or the number of tunnels of regions in the image partition. Finally, we present some experimental results of 2D and 3D image segmentation using different criteria detailed in this chapter. |
Databáze: | OpenAIRE |
Externí odkaz: |