Deuterium Spin Probes of Side-Chain Dynamics in Proteins. 1. Measurement of Five Relaxation Rates per Deuteron in 13C-Labeled and Fractionally 2H-Enriched Proteins in Solution
Autor: | Lewis E. Kay, Oscar Millet, D. R. Muhandiram, Nikolai R. Skrynnikov |
---|---|
Rok vydání: | 2002 |
Předmět: |
Models
Molecular Carbon Isotopes Binding Sites Isotope Chemistry Relaxation (NMR) Analytical chemistry Immunoglobulins General Chemistry Deuterium Biochemistry Molecular physics Catalysis SH3 domain src Homology Domains Magnetization Colloid and Surface Chemistry Bacterial Proteins Side chain Drosophila Proteins Insect Proteins Spin (physics) Nuclear Magnetic Resonance Biomolecular Immunoglobulin binding |
Zdroj: | Journal of the American Chemical Society. 124:6439-6448 |
ISSN: | 1520-5126 0002-7863 |
DOI: | 10.1021/ja012497y |
Popis: | New pulse sequences are presented for the measurement of the relaxation of deuterium double quantum, quadrupolar order, and transverse antiphase magnetization in (13)CH(2)D methyl groups of (15)N-, (13)C-labeled, fractionally deuterated proteins. Together with previously developed experiments for measuring deuterium longitudinal and transverse decay rates [Muhandiram, D. R.; Yamazaki, T.; Sykes, B. D.; Kay, L. E. J. Am. Chem. Soc. 1995, 117, 11536], these schemes allow measurement of the five unique decay constants of a single deuteron, providing an unprecedented opportunity to investigate side-chain dynamics in proteins. All five deuterium relaxation rates have been measured for deuterons in the methyl groups of the B1 immunoglobulin binding domain of peptostreptococcal protein L and the N-terminal SH3 domain from the protein drk. Since values of the spectral density function at only three different frequencies contribute to the five relaxation rates, the self-consistency of the relaxation data is readily established. Very good agreement is obtained between calculated parameters describing the amplitudes and time scales of motion when different subsets of the relaxation data are employed. |
Databáze: | OpenAIRE |
Externí odkaz: |