Post-training discriminative pruning for RBMs
Autor: | Enrique Albornoz, Hugo Leonardo Rufiner, John Goddard Close, Máximo Sánchez-Gutiérrez |
---|---|
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
Boltzmann machine Word error rate Computational intelligence 02 engineering and technology Machine learning computer.software_genre Theoretical Computer Science purl.org/becyt/ford/1 [https] 020901 industrial engineering & automation Discriminative model 0202 electrical engineering electronic engineering information engineering PRUNING EMOTION CLASSIFICATION DISCRIMINATIVE INFORMATION PHONEME CLASSIFICATION Mathematics Network architecture Artificial neural network business.industry Pattern recognition purl.org/becyt/ford/1.2 [https] Mutual information Ciencias de la Computación RESTRICTED BOLTZMANN MACHINES Ciencias de la Computación e Información 020201 artificial intelligence & image processing Geometry and Topology Artificial intelligence business computer Classifier (UML) CIENCIAS NATURALES Y EXACTAS Software |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1433-7479 1432-7643 |
DOI: | 10.1007/s00500-017-2784-3 |
Popis: | One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network. Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; México Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Close, John Goddard. Universidad Autónoma Metropolitana; México |
Databáze: | OpenAIRE |
Externí odkaz: |