In silico prediction of the cell proliferation in porous scaffold using model of effective pore
Autor: | Valentin Dediu, Alessandro Russo, Vitaly Goranov, Silvia Panseri, Maurilio Marcacci, A. Makhaniok, S. Semerikhina, Y. Haranava |
---|---|
Přispěvatelé: | Makhaniok A, Haranava Y, Goranov V, Panseri S, Semerikhina S, Russo A, Marcacci M, Dediu V |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Statistics and Probability
Pore size Scaffold Time Factors Materials science In silico Cell Count Nanotechnology Cell density Models Biological General Biochemistry Genetics and Molecular Biology Diffusion Porous scaffold Mass transfer Computer Simulation Diffusion (business) Cell proliferation Tissue Scaffolds Cell growth Oxygen uptake rate Systems Biology Applied Mathematics General Medicine Oxygen Modeling and Simulation Mathematical modeling Biological system Porosity |
Zdroj: | Biosystems (Amst. Print) 114 (2013): 227–237. doi:10.1016/j.biosystems.2013.10.001 info:cnr-pdr/source/autori:Makhaniok, A.; Haranava, Y.; Goranov, Vitaly A.; Panseri, Silvia; Semerikhina, S.; Russo, Alessandro; Marcacci, Maurilio; Dediu, Valentin Alek/titolo:In silico prediction of the cell proliferation in porous scaffold using model of effective pore/doi:10.1016%2Fj.biosystems.2013.10.001/rivista:Biosystems (Amst. Print)/anno:2013/pagina_da:227/pagina_a:237/intervallo_pagine:227–237/volume:114 |
DOI: | 10.1016/j.biosystems.2013.10.001 |
Popis: | The mathematical prediction of cell proliferation in porous scaffold still remains a challenge. The analysis of existing models and experimental data confirms a need for a new solution, which takes into account cells" development on the scaffold pore walls as well as some additional parameters such as the pore size, cell density in cellular layers, the thickness of the growing cell layer and others. The simulations, presented below, are based on three main approaches. The first approach takes into account multilayer cell growth on the pore walls of the scaffold. The second approach is a simulation of cell proliferation in a discrete process as a continuous one. The third one is the representation of scaffold structure as a system of cylindrical channels. Oxygen (nutrient) mass transfer is realized inside these channels. The model, described below, proposes the new solution to time dependent description of cell proliferation in porous scaffold and optimized trophical conditions for tissue development. © 2013 Elsevier Ireland Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |