Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers
Autor: | Gediminas Markevicius, Arnaud Rigacci, Julien Jaxel, Tatiana Budtova |
---|---|
Přispěvatelé: | Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), MINES ParisTech - École nationale supérieure des mines de Paris-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), MINES ParisTech - École nationale supérieure des mines de Paris-PSL Research University (PSL) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Materials science
Thermal properties Composite number Mechanical properties 02 engineering and technology 010402 general chemistry 01 natural sciences [SPI.MAT]Engineering Sciences [physics]/Materials chemistry.chemical_compound [SPI]Engineering Sciences [physics] Flexural strength [SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ Fiber Cellulose Composite material Energy materials ComputingMilieux_MISCELLANEOUS Aerogels Aerogel 021001 nanoscience & nanotechnology Supercritical fluid 0104 chemical sciences Cellulose fiber chemistry Mechanics of Materials Ceramics and Composites Natural fibers 0210 nano-technology Ambient pressure |
Zdroj: | Composites Part A: Applied Science and Manufacturing Composites Part A: Applied Science and Manufacturing, Elsevier, 2017, 103, pp.113-121. ⟨10.1016/j.compositesa.2017.09.018⟩ |
ISSN: | 1359-835X |
DOI: | 10.1016/j.compositesa.2017.09.018⟩ |
Popis: | International audience; Short man-made cellulose fibers (TENCEL® fibers) were used to mechanically reinforce thermal superinsulating silica aerogels. The aerogels were prepared via two drying techniques: ambient pressure drying and with supercritical CO2, in both cases resulting in monolithic non-brittle materials. The influence of fiber length and concentration on the thermal conductivity and flexural properties of both types of composite aerogels was evaluated. Thermal conductivity in room conditions varied from 0.015 to 0.018 W.K-1.m-1; it slightly increased with fiber concentration but remained in superinsulation domain. The importance of fiber percolation concentration for synthesizing monolithic ambient pressure dried composite aerogels was demonstrated. Contrary to neat silica aerogels, non-brittle behavior was observed for composite aerogels regardless of the drying method when reinforced with cellulose fibers. Macroscopic short cellulose based fibers are efficient and easy to use for preparing robust, monolithic, thermal superinsulating aerogel materials. |
Databáze: | OpenAIRE |
Externí odkaz: |