Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes
Autor: | Joanna Żur-Pińska, Agnieszka Mrozik, Artur Pinski, Gabriela Pacek, Agnieszka Nowak |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Salinity
Membrane permeability Health Toxicology and Mutagenesis 0211 other engineering and technologies 02 engineering and technology Membrane properties 010501 environmental sciences 01 natural sciences Environmental pollution Catechol 2 3-Dioxygenase sanility chemistry.chemical_compound Suboptimal temperatures Phenol degradation GE1-350 Cyclopropane fatty acid Fatty acid methyl ester 0105 earth and related environmental sciences chemistry.chemical_classification 021110 strategic defence & security studies biology Phenol Pseudomonas putida pH Pseudomonas Cell Membrane Public Health Environmental and Occupational Health Suboptimal temperatures pH salinity Temperature Fatty acid General Medicine Gene Expression Regulation Bacterial Methyltransferases Hydrogen-Ion Concentration biology.organism_classification Pollution Adaptation Physiological Environmental sciences Biodegradation Environmental chemistry Biochemistry TD172-193.5 Gene expression Bacteria |
Zdroj: | Ecotoxicology and Environmental Safety, Vol 221, Iss, Pp 112431-(2021) National Information Processing Institute |
Popis: | Detailed characterization of new Pseudomonas strains that degrade toxic pollutants is required and utterly necessary before their potential use in environmental microbiology and biotechnology applications. Therefore, phenol degradation by Pseudomonas putida KB3 under suboptimal temperatures, pH, and salinity was examined in this study. Parallelly, adaptive mechanisms of bacteria to stressful growth conditions concerning changes in cell membrane properties during phenol exposure as well as the expression level of genes encoding catechol 2,3-dioxygenase (xylE) and cyclopropane fatty acid synthase (cfaB) were determined. It was found that high salinity and the low temperature had the most significant effect on the growth of bacteria and the rate of phenol utilization. Degradation of phenol (300 mg L−1) proceeded 12-fold and seven-fold longer at 10 °C and 5% NaCl compared to the optimal conditions. The ability of bacteria to degrade phenol was coupled with a relatively high activity of catechol 2,3-dioxygenase. The only factor that inhibited enzyme activity by approximately 80% compared to the control sample was salinity. Fatty acid methyl ester (FAMEs) profiling, membrane permeability measurements, and hydrophobicity tests indicated severe alterations in bacteria membrane properties during phenol degradation in suboptimal growth conditions. The highest values of pH, salinity, and temperature led to a decrease in membrane permeability. FAME analysis showed fatty acid saturation indices and cyclopropane fatty acid participation at high temperature and salinity. Genetic data showed that suboptimal growth conditions primarily resulted in down-regulation of xylE and cfaB gene expression. |
Databáze: | OpenAIRE |
Externí odkaz: |