Unsupervised Satellite Image Time Series Clustering Using Object-Based Approaches and 3D Convolutional Autoencoder
Autor: | Maria Trocan, Ekaterina Kalinicheva, Jérémie Sublime |
---|---|
Přispěvatelé: | Institut Supérieur d'Electronique de Paris (ISEP), Laboratoire d'Informatique de Paris-Nord (LIPN), Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Computer science satellite image time series 0211 other engineering and technologies ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION 02 engineering and technology unsupervised learning 01 natural sciences [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] 3D convolutional network Segmentation lcsh:Science Cluster analysis Representation (mathematics) Image resolution 021101 geological & geomatics engineering 0105 earth and related environmental sciences autoencoder clustering segmentation business.industry [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Pattern recognition Object (computer science) Autoencoder General Earth and Planetary Sciences Unsupervised learning lcsh:Q Satellite Image Time Series Artificial intelligence business |
Zdroj: | Remote Sensing; Volume 12; Issue 11; Pages: 1816 Remote Sensing Remote Sensing, MDPI, 2020, Advanced Machine Learning for Time Series Remote Sensing Data Analysis), 12 (11), ⟨10.3390/rs12111816⟩ Remote Sensing, MDPI, In press, ⟨10.3390/rs12111816⟩ Remote Sensing, Vol 12, Iss 1816, p 1816 (2020) |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs12111816 |
Popis: | International audience; Nowadays, satellite image time series (SITS) analysis has become an indispensable part of many research projects as the quantity of freely available remote sensed data increases every day. However, with the growing image resolution, pixel-level SITS analysis approaches have been replaced by more efficient ones leveraging object-based data representations. Unfortunately, the segmentation of a full time series may be a complicated task as some objects undergo important variations from one image to another and can also appear and disappear. In this paper, we propose an algorithm that performs both segmentation and clustering of SITS. It is achieved by using a compressed SITS representation obtained with a multi-view 3D convolutional autoencoder. First, a unique segmentation map is computed for the whole SITS. Then, the extracted spatio-temporal objects are clustered using their encoded descriptors. The proposed approach was evaluated on two real-life datasets and outperformed the state-of-the-art methods. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |