THE FINITE SECTION METHOD FOR DISSIPATIVE OPERATORS

Autor: Sergey Naboko, Marco Marletta
Rok vydání: 2014
Předmět:
Zdroj: Mathematika. 60:415-443
ISSN: 2041-7942
0025-5793
DOI: 10.1112/s0025579314000126
Popis: We show that for self-adjoint Jacobi matrices and Schrodinger operators, perturbed by dissipative potentials in l 1 (N) and L 1 (0,∞) respectively, the finite section method does not omit any points of the spectrum. In the Schrodinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for absolutely continuous spectrum.
Databáze: OpenAIRE