THE FINITE SECTION METHOD FOR DISSIPATIVE OPERATORS
Autor: | Sergey Naboko, Marco Marletta |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Mathematika. 60:415-443 |
ISSN: | 2041-7942 0025-5793 |
DOI: | 10.1112/s0025579314000126 |
Popis: | We show that for self-adjoint Jacobi matrices and Schrodinger operators, perturbed by dissipative potentials in l 1 (N) and L 1 (0,∞) respectively, the finite section method does not omit any points of the spectrum. In the Schrodinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for absolutely continuous spectrum. |
Databáze: | OpenAIRE |
Externí odkaz: |