Mathematical theory and simulations of thermoporoelasticity
Autor: | Andro Mikelić, Thomas Wick, Cornelis J. van Duijn |
---|---|
Přispěvatelé: | Eindhoven University of Technology, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Universitaet Hannover, Institut fur Angewandte Mathematik, ANR-19-CE05-0032,UPGEO,Changement d'échelle et simulation des flux de chaleur pour amélioer l'efficacité des systèmes géothermiques profonds(2019), ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Discretization
Computational Mechanics General Physics and Astronomy 02 engineering and technology System of linear equations 01 natural sciences Discrete system 0203 mechanical engineering Applied mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology Mathematics Fundamental theorem Mechanical Engineering [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment Thermoporoelasticity equations Backward Euler method Finite element method Computer Science Applications free energy and stability 010101 applied mathematics Mathematical theory 020303 mechanical engineering & transports heat convection by Darcy's velocity monolithic numerical scheme Mechanics of Materials [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] Temporal discretization |
Zdroj: | Computer Methods in Applied Mechanics and Engineering Computer Methods in Applied Mechanics and Engineering, Elsevier, In press |
ISSN: | 0045-7825 |
Popis: | International audience; In this paper we study the equations of semi-linear thermoporoelasticity. Starting point is the dimensionless formulation in van Duijn et al [7] (C.J. van Duijn, A. Mikelić, M. F. Wheeler, T. Wick, Internat. J Engng Sci., Vol. 138, 2019), which was obtained by a formal two-scale expansion. Nonlinearities in the equations arise through the fluid viscosity and the thermal conductivity, both may depend on temperature , and through the coupling in the heat convection by the Darcy discharge in the energy equation. The coupled system of equations involves as unknowns the skeleton displacement, Darcy discharge, fluid pressure and temperature. We treat the system in its incremental (i.e. time-discrete) form. We prove existence by applying a fundamental theorem of Brézis on pseudo-monotone operators. Moreover we show that the free energy of the system acts as a Lyapunov functional. This yields global stability in the time-stepping process. Our theoretical results are substantiated with two-dimensional numerical tests using a monolithic formulation. Temporal dis-cretization is based on the backward Euler scheme and finite elements are employed for the spatial discretization. The semi-linear discrete system is solved with Newton's method. In the proposed numerical examples, different source terms are employed and spatial mesh refinement studies show computational convergence. |
Databáze: | OpenAIRE |
Externí odkaz: |