Vortex merging and splitting: A route to elastoinertial turbulence in Taylor-Couette flow
Autor: | Jurriaan J. J. Gillissen, Stavroula Balabani, Tom Lacassagne, Neil Cagney |
---|---|
Přispěvatelé: | Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai), Institut Mines-Télécom [Paris] (IMT), University College of London [London] (UCL), Queen Mary University of London (QMUL) |
Rok vydání: | 2020 |
Předmět: |
Fluid Flow and Transfer Processes
Physics Inertial frame of reference Turbulence Taylor–Couette flow Computational Mechanics Reynolds number Mechanics 01 natural sciences Viscoelasticity [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] 010305 fluids & plasmas Vortex Physics::Fluid Dynamics Wavelength symbols.namesake Modeling and Simulation 0103 physical sciences symbols Elasticity (economics) 010306 general physics ComputingMilieux_MISCELLANEOUS |
Zdroj: | Physical Review Fluids Physical Review Fluids, American Physical Society, 2020, 5 (11), ⟨10.1103/PhysRevFluids.5.113303⟩ |
ISSN: | 2469-990X |
DOI: | 10.1103/physrevfluids.5.113303 |
Popis: | Experimental evidence is reported of a new merge-split transition (MST) to elastoinertial turbulence (EIT) in Taylor-Couette flows of viscoelastic polymer solutions, caused by merging and splitting of base Taylor vortices when crossed by elastic axial waves. Vortex merging and splitting are random in nature and increase in frequency with Reynolds number. When superimposed on a RSW flow state, they cause abrupt changes in the axial spatial wavelength, leading to the transition from a RSW to the EIT state. MST is thus identified as an inertial feature solely triggered by elasticity and independent of any shear-thinning behavior. |
Databáze: | OpenAIRE |
Externí odkaz: |