ThreatPredict: From Global Social and Technical Big Data to Cyber Threat Forecast

Autor: Narjisse Nejjari, Mounir Ghogho, Kathleen M. Carley, Abdellah Houmz, Ghita Mezzour, Frédéric Beck, Jerome Francois, Mehdi Zakroum, Othmane Cherqi, Hicham Hammouchi, Abdelkader Lahmadi
Přispěvatelé: Resilience and Elasticity for Security and ScalabiliTy of dynamic networked systems (RESIST), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Haute Sécurité (LHS - Inria), Institut National de Recherche en Informatique et en Automatique (Inria)-Direction générale de l'Armement (DGA), Université Internationale de Rabat (UIR), Carnegie Mellon University [Pittsburgh] (CMU), LHS
Rok vydání: 2020
Předmět:
Zdroj: Advanced Technologies for Security Applications-Proceedings of the NATO Science for Peace and Security 'Cluster Workshop on Advanced Technologies', 17-18 September 2019, Leuven, Belgium
Advanced Technologies for Security Applications
Advanced Technologies for Security Applications, Springer, pp.45-54, 2020, Advanced Technologies for Security Applications. Proceedings of the NATO Science for Peace and Security 'Cluster Workshop on Advanced Technologies, ⟨10.1007/978-94-024-2021-0_5⟩
NATO Science for Peace and Security Series B: Physics and Biophysics
NATO Science for Peace and Security Series B: Physics and Biophysics-Advanced Technologies for Security Applications
NATO Science for Peace and Security Series B: Physics and Biophysics ISBN: 9789402420203
ISSN: 1874-6500
1874-6535
DOI: 10.1007/978-94-024-2021-0_5
Popis: International audience; Predicting the next threats that may occurs in the Internet is a multifaceted problem as the predictions must be enough precise and given as most as possible in advance to be exploited efficiently, for example to setup defensive measures. The ThreatPredict project aims at building predictive models by integrating exogenous sources of data using machine learning algorithms. This paper reports the most notable results using technical data from security sensors or contextual information about darkweb cyber-criminal markets and data breaches.
Databáze: OpenAIRE