Potential role for immune-related genes in autism spectrum disorders: Evidence from genome-wide association meta-analysis of autistic traits
Autor: | Ward De Witte, Geert Poelmans, Mark A. Bellgrove, Gemma Cadby, Andrew J. O. Whitehouse, Jeggan Tiego, Janita Bralten, Eric K. Moses, Martina Arenella, Rachel M. Jones, Jan K. Buitelaar, Alex Fornito, Lambertus A. Kiemeney, Ziarih Hawi, Beth Patricia Johnson |
---|---|
Rok vydání: | 2022 |
Předmět: |
0301 basic medicine
Autism Spectrum Disorder autism spectrum disorders Population Genome-wide association study Immune related genes 03 medical and health sciences 0302 clinical medicine Immune system 130 000 Cognitive Neurology & Memory Clinical heterogeneity Developmental and Educational Psychology medicine Humans genetics Autistic Disorder education Genetics education.field_of_study Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] Original Articles molecular and cellular biology medicine.disease immune system Phenotype 030104 developmental biology Autistic traits Meta-analysis Urological cancers Radboud Institute for Health Sciences [Radboudumc 15] Autism Psychology 030217 neurology & neurosurgery Genome-Wide Association Study |
Zdroj: | Autism, 26, 2, pp. 361-372 Autism, 26, 361-372 Autism |
ISSN: | 1362-3613 |
Popis: | The clinical heterogeneity of autism spectrum disorders majorly challenges their genetic study. Autism spectrum disorders symptoms occur in milder forms in the general population, as autistic-like traits, and share genetic factors with autism spectrum disorders. Here, we investigate the genetics of individual autistic-like traits to improve our understanding of autism spectrum disorders. We meta-analysed four population-based genome-wide association studies investigating four autistic-like traits – ‘attention-to-detail’, ‘imagination’, ‘rigidity’ and ‘social-skills’ ( n = 4600). Using autism spectrum disorder summary statistics from the Psychiatric Genomic Consortium ( N = 46,350), we applied polygenic risk score analyses to understand the genetic relationship between autism spectrum disorders and autistic-like traits. Using MAGMA, we performed gene-based and gene co-expression network analyses to delineate involved genes and pathways. We identified two novel genome-wide significant loci – rs6125844 and rs3731197 – associated with ‘attention-to-detail’. We demonstrated shared genetic aetiology between autism spectrum disorders and ‘rigidity’. Analysing top variants and genes, we demonstrated a role of the immune-related genes RNF114, CDKN2A, KAZN, SPATA2 and ZNF816A in autistic-like traits. Brain-based genetic expression analyses further linked autistic-like traits to genes involved in immune functioning, and neuronal and synaptic signalling. Overall, our findings highlight the potential of the autistic-like trait–based approach to address the challenges of genetic research in autism spectrum disorders. We provide novel insights showing a potential role of the immune system in specific autism spectrum disorder dimensions. Lay abstract Autism spectrum disorders are complex, with a strong genetic basis. Genetic research in autism spectrum disorders is limited by the fact that these disorders are largely heterogeneous so that patients are variable in their clinical presentations. To address this limitation, we investigated the genetics of individual dimensions of the autism spectrum disorder phenotypes, or autistic-like traits. These autistic-like traits are continuous variations in autistic behaviours that occur in the general population. Therefore, we meta-analysed data from four different population cohorts in which autistic-like traits were measured. We performed a set of genetic analyses to identify common variants for autistic-like traits, understand how these variants related to autism spectrum disorders, and how they contribute to neurobiological processes. Our results showed genetic associations with specific autistic-like traits and a link to the immune system. We offer an example of the potential to use a dimensional approach when dealing with heterogeneous, complex disorder like autism spectrum disorder. Decomposing the complex autism spectrum disorder phenotype in its core features can inform on the specific biology of these features which is likely to account to clinical variability in patients. |
Databáze: | OpenAIRE |
Externí odkaz: |