Scattering operator for nonlinear Klein–Gordon equations in higher space dimensions

Autor: Nakao Hayashi, Pavel I. Naumkin
Rok vydání: 2008
Předmět:
Zdroj: Journal of Differential Equations. 244(1):188-199
ISSN: 0022-0396
DOI: 10.1016/j.jde.2007.10.002
Popis: We prove the existence of the scattering operator in the neighborhood of the origin in the weighted Sobolev space H β , 1 with β = max ( 3 2 , 1 + 2 n ) for the nonlinear Klein–Gordon equation with a power nonlinearity u t t − Δ u + u = μ | u | σ − 1 u , ( t , x ) ∈ R × R n , where 1 + 4 n + 2 σ 1 + 4 n for n ⩾ 3 , μ ∈ C .
Databáze: OpenAIRE