A note on the Ostrovsky equation in weighted Sobolev spaces

Autor: José Jiménez Urrea, Eddye Bustamante, Jorge Mejía
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 460:1004-1018
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.12.025
Popis: In this work we consider the initial value problem (IVP) associated to the Ostrovsky equations $$\left. \begin{array}{rl} u_t+\partial_x^3 u\pm \partial_x^{-1}u +u \partial_x u &\hspace{-2mm}=0,\qquad\qquad x\in\mathbb R,\; t\in\mathbb R,\\ u(x,0)&\hspace{-2mm}=u_0(x). \end{array} \right\}$$ We study the well-posedness of the IVP in the weighted Sobolev spaces $$Z_{s,\frac{s}2}:=\{u\in H^s(\mathbb R):D_x^{-s} u\in L^2(\mathbb R)\}\cap L^2(|x|^s dx ),$$ with $\frac34
Comment: arXiv admin note: text overlap with arXiv:1412.3155
Databáze: OpenAIRE