On the second largest eigenvalue of some Cayley graphs of the Symmetric Group
Autor: | Alexandre Zalesski, Johannes Siemons |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Condensed Matter::Quantum Gases
Mathematics::Combinatorics Algebra and Number Theory Algebraic combinatorics Cayley graph High Energy Physics::Lattice Alternating group Lambda Combinatorics 20G05 20G40 Symmetric group FOS: Mathematics Discrete Mathematics and Combinatorics Mathematics - Combinatorics Combinatorics (math.CO) Representation Theory (math.RT) Eigenvalues and eigenvectors Mathematics - Representation Theory Mathematics |
Popis: | Let $S_n$ and $A_{n}$ denote the symmetric and alternating group on the set $\{1,.., n\},$ respectively. In this paper we are interested in the second largest eigenvalue $\lambda_{2}(\Gamma)$ of the Cayley graph $\Gamma=Cay(G,H)$ over $G=S_{n}$ or $A_{n}$ for certain connecting sets $H.$ Let $1 Comment: 14 pages |
Databáze: | OpenAIRE |
Externí odkaz: |