Optimization of Electrospun Poly(caprolactone) Fiber Diameter for Vascular Scaffolds to Maximize Smooth Muscle Cell Infiltration and Phenotype Modulation

Autor: Dae Geun Han, Yongsung Hwang, Kook Yang Park, Kuk Hui Son, Chi Bum Ahn, Jin Woo Lee, Joo Hyun Kim, Ji-Hyun Lee
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Polymers, Vol 11, Iss 4, p 643 (2019)
Polymers
Volume 11
Issue 4
ISSN: 2073-4360
Popis: Due to the morphological resemblance between the electrospun nanofibers and extracellular matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration. Relationships between scaffold morphologies and cells are cell type dependent. In this study, we sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell (VSMC) regeneration in vascular scaffolds. Scaffolds were produced using poly(caprolactone) (PCL) electrospun fiber diameters of 0.5, 0.7, 1, 2, 2.5, 5, 7 or 10 &mu
m, and VSMC survivals, proliferations, infiltrations, and phenotypes were recorded after culturing cells on these scaffolds for one, four, seven, or 10 days. VSMC phenotypes and macrophage infiltrations into scaffolds were evaluated by implanting scaffolds subcutaneously in a mouse for seven, 14, or 28 days. We found that human VSMC survival was not dependent on the electrospun fiber diameter. In summary, increasing fiber diameter reduced VSMC proliferation, increased VSMC infiltration and increased macrophage infiltration and activation. Our results indicate that electrospun PCL fiber diameters of 7 or 10 µ
m are optimum in terms of VSMC infiltration and macrophage infiltration and activation, albeit at the expense of VSMC proliferation.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje