A Meta-Analysis of Modifications of Root System Traits of Crop Plants to Potassium (K) Deprivation

Autor: Paul A. Asare, Azure Kwabena Sanleri, David O. Yawson, Kwadwo Kusi Amoah, Samuel Asare-Larbi, Michael O. Adu, Kofi Atiah, Josiah Techie-Menson, Emmanuel Afutu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Plant Roots ISBN: 9781839682667
Popis: Unlike nitrogen (N) and phosphorus (P), morphological responses of root systems of crop plants to potassium (K) dynamics in soils or growth media are only gaining currency. This is due to the realization of the instrumental role of K in several cellular and tissue level processes crucial for the growth, stress tolerance, metabolic functions, and yield of crop plants, and ultimately, food security and sustainable agriculture. This chapter used meta-analysis to synthesize the pooled evidence for modifications in several root system traits of different crop plants under conditions of K starvation in different growth media. In all, 37 studies that passed inclusion/exclusion criteria, from 1969 to 2019, were analyzed in aggregate and then disaggregated for root biomass, root length, and the number of roots. Three moderators were analyzed: type of soil or growth medium, crop, and K fertilizer applied in the included studies. The aggregated results show that the cumulative effect of K deprivation was a significant and large reduction (about 25.5 ± 15.0%) in the bulk of root system traits considered, which was slightly lower than the reduction in shoot- or yield-related traits. Reductions of approximately 38 ± 38.0% in root biomass and 23.2 ± 18.6% in root length were observed, and the magnitudes of reduction were comparable to those observed from the disaggregated data. Though reductions in root system traits due to K starvation occurred under both greenhouse/lab and field conditions, the cumulative reduction in the former was significantly larger than that of the latter. Among the moderators, the effect of type of soil (or growth media) and crop on the scale of modification of root system traits to K deprivation are stronger compared to the effect of type of K fertilizer applied. It is concluded that, overall, K deprivation leads to significant reductions in root system traits, especially root biomass and length in soils and perlite regardless of the type of K fertilizer applied. Attention should be given to K management in cropping systems to avoid K starvation, especially at the early and vegetative stages, and to improve K reserves in soils. Further attention should be given to the responses of root system traits to K supply when matching crops to soils.
Databáze: OpenAIRE