From Ball's cube slicing inequality to Khinchin-type inequalities for negative moments

Autor: Tomasz Tkocz, Giorgos Chasapis, Hermann König
Rok vydání: 2021
Předmět:
Zdroj: Journal of Functional Analysis. 281:109185
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2021.109185
Popis: We establish a sharp moment comparison inequality between an arbitrary negative moment and the second moment for sums of independent uniform random variables, which extends Ball's cube slicing inequality.
Databáze: OpenAIRE