From Ball's cube slicing inequality to Khinchin-type inequalities for negative moments
Autor: | Tomasz Tkocz, Giorgos Chasapis, Hermann König |
---|---|
Rok vydání: | 2021 |
Předmět: |
Inequality
media_common.quotation_subject Probability (math.PR) Mathematical analysis Second moment of area Cube (algebra) Type (model theory) Slicing Functional Analysis (math.FA) Mathematics - Functional Analysis Moment (mathematics) FOS: Mathematics Ball (mathematics) 60E15 26D15 Random variable Mathematics - Probability Analysis Mathematics media_common |
Zdroj: | Journal of Functional Analysis. 281:109185 |
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2021.109185 |
Popis: | We establish a sharp moment comparison inequality between an arbitrary negative moment and the second moment for sums of independent uniform random variables, which extends Ball's cube slicing inequality. |
Databáze: | OpenAIRE |
Externí odkaz: |