Pairs of additive sextic forms

Autor: Hemar Godinho, Paulo H. A. Rodrigues, Michael P. Knapp
Rok vydání: 2013
Předmět:
Zdroj: Journal of Number Theory. 133:176-194
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2012.06.004
Popis: A special case of a conjecture attributed to Artin states that any system of two homogeneous diagonal forms of degree k with integer coefficients should have nontrivial zeros over any p-adic field Q p provided only that the number of variables is at least 2 k 2 + 1 . In this article, we prove that the conjecture is true when k = 6 .
Databáze: OpenAIRE