Autor: |
Hemar Godinho, Paulo H. A. Rodrigues, Michael P. Knapp |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
Journal of Number Theory. 133:176-194 |
ISSN: |
0022-314X |
DOI: |
10.1016/j.jnt.2012.06.004 |
Popis: |
A special case of a conjecture attributed to Artin states that any system of two homogeneous diagonal forms of degree k with integer coefficients should have nontrivial zeros over any p-adic field Q p provided only that the number of variables is at least 2 k 2 + 1 . In this article, we prove that the conjecture is true when k = 6 . |
Databáze: |
OpenAIRE |
Externí odkaz: |
|