Running mechanics adjustments to perceptually-regulated interval runs in hypoxia and normoxia

Autor: Liam Hobbins, Nadia Gaoua, Olivier Girard, Steve Hunter, Siu Nam Li, Joong Hyun Ryu, Jean-Benoit Morin
Rok vydání: 2020
Předmět:
Zdroj: Journal of science and medicine in sport. 23(11)
ISSN: 1878-1861
Popis: Objectives We determined whether perceptually-regulated, high-intensity intermittent runs in hypoxia and normoxia induce similar running mechanics adjustments within and between intervals. Design Within-participants repeated measures. Methods Nineteen trained runners completed a high-intensity intermittent running protocol (4 × 4-min intervals at a perceived rating exertion of 16 on the 6–20 Borg scale, 3-min passive recoveries) in either hypoxic (FiO2 = 0.15) or normoxic (FiO2 = 0.21) conditions. Running mechanics were collected over 10 consecutive steps, at constant velocity (∼15.0 ± 2.0 km.h−1), at the beginning and the end of each 4-min interval. Repeated measure ANOVA were used to assess within intervals (onset vs. end of each interval), between intervals (interval 1, 2, 3 vs. 4) and FiO2 (0.15 vs. 0.21) main effects and any potential interaction. Results Participants progressively reduced running velocity from interval 1–4, and more so in hypoxia compared to normoxia for intervals 2, 3 and 4 (P 0.298) and FiO2 (across all intervals P > 0.082) main effects or any significant between intervals × within intervals × FiO2 interactions (all P > 0.098) for any running mechanics variables. Irrespective of interval number or FiO2, peak loading rate (+10.6 ± 7.7%; P Conclusions When carrying out perceptually-regulated interval treadmill runs, runners adjust to progressively slower velocities in hypoxia compared to normoxia. However, only subtle constant-velocity modifications of their mechanical behaviour occurred within each set, independently of FiO2 or interval number.
Databáze: OpenAIRE