Role of Conformational Entropy in Molecular Recognition by TAZ1 of CBP
Autor: | Jakob Dogan, Ida Nyqvist, Eva Andersson |
---|---|
Rok vydání: | 2019 |
Předmět: |
Models
Molecular Zinc binding Entropy Telomere-Binding Proteins 010402 general chemistry 01 natural sciences Adapter (genetics) Molecular recognition Protein Domains 0103 physical sciences Materials Chemistry Transcriptional regulation Humans Physical and Theoretical Chemistry CREB-binding protein Biological sciences 010304 chemical physics biology Chemistry Conformational entropy CREB-Binding Protein 0104 chemical sciences Surfaces Coatings and Films Cell biology Cell and molecular biology biology.protein Protein Binding |
Zdroj: | The journal of physical chemistry. B. 123(13) |
ISSN: | 1520-5207 |
Popis: | The globular transcriptional adapter zinc binding 1 (TAZ1) domain of CREB binding protein participates in protein-protein interactions that are involved in transcriptional regulation. TAZ1 binds numerous targets, of which many are intrinsically disordered proteins that undergo a disorder-to-order transition to various degrees. One such target is the disordered transactivation domain of transcription factor RelA (TAD-RelA), which with its interaction with TAZ1 is involved in transcriptional regulation of genes in NF-κB signaling. We have here performed nuclear magnetic resonance backbone and side-chain relaxation studies to investigate the influence of RelA-TA2 (residues 425-490 in TAD-RelA) binding on the subnanosecond internal motions of TAZ1. We find a considerable dynamic response on both the backbone and side-chain levels, which corresponds to a conformational entropy change that contributes significantly to the binding energetics. We further show that the microscopic origins of the dynamic response of TAZ1 vary depending on the target. This study demonstrates that folded protein domains that are able to interact with various targets are not dynamically passive but can have a significant role in the motional response upon target association. |
Databáze: | OpenAIRE |
Externí odkaz: |