A class of cubic Rauzy fractals
Autor: | Ali Messaoudi, Daniel Smania, Jéfferson L.R. Bastos, Tatiana Miguel Rodrigues |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 0304-3975 |
DOI: | 10.1016/j.tcs.2015.04.007 |
Popis: | In this paper, we study arithmetical and topological properties for a class of Rauzy fractals ${\mathcal R}_a$ given by the polynomial $x^3- ax^2+x-1$ where $a \geq 2$ is an integer. In particular, we prove the number of neighbors of ${\mathcal R}_a$ in the periodic tiling is equal to $8$. We also give explicitly an automaton that generates the boundary of ${\mathcal R}_a$. As a consequence, we prove that ${\mathcal R}_2$ is homeomorphic to a topological disk. |
Databáze: | OpenAIRE |
Externí odkaz: |