A candidate local minimizer of Blake and Zisserman functional
Autor: | Michele Carriero, Antonio Leaci, Franco Tomarelli |
---|---|
Přispěvatelé: | Carriero, Michele, Leaci, Antonio, Tomarelli, Franco, Franco, Tomarelli |
Rok vydání: | 2011 |
Předmět: |
Image segmentation
Mathematics(all) Calculus of variation General Mathematics Applied Mathematics Mathematical analysis Boundary (topology) Free discontinuity Necessary conditions for local minimizer Center (group theory) Term (logic) Calculus of variations Euler equations Discontinuity (linguistics) symbols.namesake symbols Mathematics (all) Asymptotic expansion Mathematics |
Zdroj: | Journal de Mathématiques Pures et Appliquées. 96(1):58-87 |
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2011.01.005 |
Popis: | We show Euler equations fulfilled by strong minimizers of Blake and Zisserman functional. We prove an Almansi-type decomposition and provide explicit coefficients of asymptotic expansion for bi-harmonic functions in a disk with a cut from center to boundary. We deduce the stress intensity factor and modes coefficients of the leading term in the expansion around crack-tip for any locally minimizing triplet of the main part of Blake and Zisserman functional in the strong formulation. We exhibit explicitly a non-trivial candidate for minimality which has a crack-tip and fulfills all integral and geometric conditions of extremality. |
Databáze: | OpenAIRE |
Externí odkaz: |