A candidate local minimizer of Blake and Zisserman functional

Autor: Michele Carriero, Antonio Leaci, Franco Tomarelli
Přispěvatelé: Carriero, Michele, Leaci, Antonio, Tomarelli, Franco, Franco, Tomarelli
Rok vydání: 2011
Předmět:
Zdroj: Journal de Mathématiques Pures et Appliquées. 96(1):58-87
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2011.01.005
Popis: We show Euler equations fulfilled by strong minimizers of Blake and Zisserman functional. We prove an Almansi-type decomposition and provide explicit coefficients of asymptotic expansion for bi-harmonic functions in a disk with a cut from center to boundary. We deduce the stress intensity factor and modes coefficients of the leading term in the expansion around crack-tip for any locally minimizing triplet of the main part of Blake and Zisserman functional in the strong formulation. We exhibit explicitly a non-trivial candidate for minimality which has a crack-tip and fulfills all integral and geometric conditions of extremality.
Databáze: OpenAIRE