Jordanian quantum deformations of D = 4 anti-de Sitter and Poincaré superalgebras
Autor: | Jerzy Lukierski, Andrzej Borowiec, V. N. Tolstoy |
---|---|
Rok vydání: | 2005 |
Předmět: |
High Energy Physics - Theory
Physics and Astronomy (miscellaneous) FOS: Physical sciences symbols.namesake Mathematics::Quantum Algebra Light cone Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Representation Theory (math.RT) Twist Mathematics::Representation Theory Engineering (miscellaneous) Contraction (operator theory) Quantum Mathematical Physics Mathematical physics Physics Mathematics::Rings and Algebras Mathematical Physics (math-ph) Superalgebra High Energy Physics - Theory (hep-th) Homogeneous space Poincaré conjecture symbols Anti-de Sitter space Mathematics - Representation Theory |
Zdroj: | The European Physical Journal C. 44:139-145 |
ISSN: | 1434-6052 1434-6044 |
DOI: | 10.1140/epjc/s2005-02338-2 |
Popis: | We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coproduct formulae for the generators of $osp(1|4)$ are given in explicit form. The nonlinear transformation of the classical superalgebra basis not modifying the defining algebraic relations but simplifying coproducts and antipodes is proposed. Our physical application is to interpret the new super-Jordanian deformation of $osp(1|4)$ superalgebra as deformed D=4 $AdS$ supersymmetries. Subsequently we perform suitable contraction of quantum Jordanian $AdS$ superalgebra and obtain new $\kappa$-deformation of D=4 Poincare superalgebra, with the bosonic sector describing the light cone $\kappa$-deformation of Poincare symmetries. Comment: LaTeX,13 pages, comments and references added, to be published in Eur.Phys.J.C |
Databáze: | OpenAIRE |
Externí odkaz: |