Screw tightness and stripping rates vary between biomechanical researchers and practicing orthopaedic surgeons

Autor: Lisa Wenzel, Michael R Whitehouse, R. Geoff Richards, Boyko Gueorguiev, Harinderjit Gill, James Fletcher, Verena Neumann, Ezio Preatoni
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Fletcher, J, Neumann, V, Wenzel, L, Gueorguiev-Rüegg, B, Richards, R, Gill, H S, Whitehouse, M & Preatoni, E 2021, ' Screw tightness and stripping rates vary between biomechanical researchers and practicing orthopaedic surgeons ', Journal of Orthopaedic Surgery and Research, vol. 16, no. 1, 642 . https://doi.org/10.1186/s13018-021-02800-z
Fletcher, J W A, Neumann, V, Wenzel, L, Gueorguiev, B, Richards, R G, Gill, H S, Whitehouse, M R & Preatoni, E 2021, ' Screw tightness and stripping rates vary between biomechanical researchers and practicing orthopaedic surgeons ', Journal of Orthopaedic Surgery and Research, vol. 16, no. 1, 642, pp. 642 . https://doi.org/10.1186/s13018-021-02800-z
Journal of Orthopaedic Surgery and Research
Journal of Orthopaedic Surgery and Research, Vol 16, Iss 1, Pp 1-9 (2021)
DOI: 10.1186/s13018-021-02800-z
Popis: Background Screws are the most frequently inserted orthopaedic implants. Biomechanical, laboratory-based studies are used to provide a controlled environment to investigate revolutionary and evolutionary improvements in orthopaedic techniques. Predominantly, biomechanical trained, non-surgically practicing researchers perform these studies, whilst it will be orthopaedic surgeons who will put these procedures into practice on patients. Limited data exist on the comparative performance of surgically and non-surgically trained biomechanical researchers when inserting screws. Furthermore, any variation in performance by surgeons and/or biomechanical researchers may create an underappreciated confounder to biomechanical research findings. This study aimed to identify the differences between surgically and non-surgically trained biomechanical researchers’ achieved screw tightness and stripping rates with different fixation methods. Methods Ten orthopaedic surgeons and 10 researchers inserted 60 cortical screws each into artificial bone, for three different screw diameters (2.7, 3.5 and 4.5 mm), with 50% of screws inserted through plates and 50% through washers. Screw tightness, screw hole stripping rates and confidence in screw purchase were recorded. Three members of each group also inserted 30 screws using an augmented screwdriver, which indicated when optimum tightness was achieved. Results Unstripped screw tightness for orthopaedic surgeons and researchers was 82% (n = 928, 95% CI 81–83) and 76% (n = 1470, 95% CI 75–76) respectively (p n = 1196] compared to screws inserted through plates [76% (95% CI 75–77), n = 1204] (p p = 0.058–0.821). Augmented screwdrivers, indicating optimum tightness, reduced stripping rates from 34 to 21% (p p = 0.385–0.965). Conclusions Surgeons and researchers showed different screw tightness under the same in vitro conditions, with greater rates of screw hole stripping by surgeons. This may have important implications for the reproducibility and transferability of research findings from different settings depending on who undertakes the experiments.
Databáze: OpenAIRE