Alveolar Macrophage Chemokine Secretion Mediates Neutrophilic Lung Injury in Nox2-Deficient Mice
Autor: | Lin F. Jordan, Jessica S. Hook, Richard T. Hogg, Renee M Potera, Mou Cao, Jessica G. Moreland |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Chemokine Neutrophils Acute Lung Injury Immunology Lung injury Article Mice 03 medical and health sciences 0302 clinical medicine Cell Movement Macrophages Alveolar medicine Animals Immunology and Allergy Lung Macrophage inflammatory protein Inflammation NADPH oxidase medicine.diagnostic_test biology Chemistry respiratory system Systemic Inflammatory Response Syndrome respiratory tract diseases 3. Good health 030104 developmental biology Bronchoalveolar lavage medicine.anatomical_structure 030220 oncology & carcinogenesis NADPH Oxidase 2 Chemokine secretion cardiovascular system biology.protein Alveolar macrophage Chemokines Reactive Oxygen Species |
Zdroj: | Inflammation. 42:185-198 |
ISSN: | 1573-2576 0360-3997 |
DOI: | 10.1007/s10753-018-0883-7 |
Popis: | Acute lung injury (ALI), developing as a component of the systemic inflammatory response syndrome (SIRS), leads to significant morbidity and mortality. Reactive oxygen species (ROS), produced in part by the neutrophil NADPH oxidase 2 (Nox2), have been implicated in the pathogenesis of ALI. Previous studies in our laboratory demonstrated the development of pulmonary inflammation in Nox2-deficient (gp91(phox-/y)) mice that was absent in WT mice in a murine model of SIRS. Given this finding, we hypothesized that Nox2 in a resident cell in the lung, specifically the alveolar macrophage, has an essential anti-inflammatory role. Using a murine model of SIRS, we examined whole-lung digests and bronchoalveolar lavage fluid (BALf) from WT and gp91(phox-/y) mice. Both genotypes demonstrated neutrophil sequestration in the lung during SIRS, but neutrophil migration into the alveolar space was only present in the gp91(phox-/y) mice. Macrophage inflammatory protein (MIP)-1α gene expression and protein secretion were higher in whole-lung digest from uninjected gp91(phox-/y) mice compared to the WT mice. Gene expression of MIP-1α, MCP-1, and MIP-2 was upregulated in alveolar macrophages obtained from gp91(phox-/y) mice at baseline compared with WT mice. Further, ex vivo analysis of alveolar macrophages, but not bone marrow-derived macrophages or peritoneal macrophages, demonstrated higher gene expression of MIP-1α and MIP-2. Moreover, isolated lung polymorphonuclear neutrophils migrate to BALf obtained from gp91(phox-/y) mice, further providing evidence of a cell-specific anti-inflammatory role for Nox2 in alveolar macrophages. We speculate that Nox2 represses the development of inflammatory lung injury by modulating chemokine expression by the alveolar macrophage. |
Databáze: | OpenAIRE |
Externí odkaz: |