Maximal entropy solutions under prescribed mass and energy
Autor: | Daniele Bartolucci, Gershon Wolansky |
---|---|
Rok vydání: | 2020 |
Předmět: |
Applied Mathematics
entropy maximization 010102 general mathematics Mathematical analysis 01 natural sciences 010101 applied mathematics Gravitation Elliptic curve Dimension (vector space) Maximal entropy Mean field theory Settore MAT/05 Entropy maximization Uniqueness 0101 mathematics non local elliptic equations with exponential nonlinearity Analysis Energy (signal processing) Mathematics |
Zdroj: | Journal of Differential Equations. 268:6646-6665 |
ISSN: | 0022-0396 |
Popis: | We consider a non-local elliptic equation with exponential nonlinearity, closely related to the mean field Liouville equation. The motivation for this equation is a variational entropy maximization problem under prescribed mass and energy. We provide an unconditional existence proof in case of electrostatic (repulsive) self-interaction, and conditional existence and uniqueness in dimension two in the case of gravitational (attractive) self-interaction. |
Databáze: | OpenAIRE |
Externí odkaz: |