An algorithmic test for diagonalizability of finite-dimensional PT-invariant systems
Autor: | Weigert, S. |
---|---|
Rok vydání: | 2005 |
Předmět: |
Quantum Physics
Pure mathematics Diagonalizable matrix FOS: Physical sciences General Physics and Astronomy Statistical and Nonlinear Physics Space (mathematics) Set (abstract data type) Matrix (mathematics) Operator (computer programming) Numerical approximation Invariant (mathematics) Quantum Physics (quant-ph) Mathematical Physics Eigenvalues and eigenvectors Mathematics |
Zdroj: | Journal of Physics A: Mathematical and General. 39:235-245 |
ISSN: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/39/1/017 |
Popis: | A non-Hermitean operator does not necessarily have a complete set of eigenstates, contrary to a Hermitean one. An algorithm is presented which allows one to decide whether the eigenstates of a given PT-invariant operator on a finite-dimensional space are complete or not. In other words, the algorithm checks whether a given PT-symmetric matrix is diagonalizable. The procedure neither requires to calculate any single eigenvalue nor any numerical approximation. 13 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |