eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

Autor: Jenny van Dongen, Joost H.A. Martens, James E. Barrett, Lee M. Butcher, Edo Vellenga, Ian Dunham, Mattia Frontini, Andrew E. Teschendorff, John Ambrose, Robert Lowe, Dirk S. Paul, Guillaume Bourque, Sadia Saeed, Charles E. Breeze, Jonathan Laperle, Vardhman K. Rakyan, Willem H. Ouwehand, Ewan Birney, Filomena Matarese, Anke K. Bergmann, Hendrik G. Stunnenberg, Pierre-Étienne Jacques, Reiner Siebert, Javier Herrero, Stephan Beck, Kate Downes, Valentina Iotchkova
Přispěvatelé: Paul, Dirk [0000-0002-8230-0116], Frontini, Mattia [0000-0001-8074-6299], Downes, Kate [0000-0003-0366-1579], Ouwehand, Willem [0000-0002-7744-1790], Apollo - University of Cambridge Repository, Biological Psychology, Guided Treatment in Optimal Selected Cancer Patients (GUTS), Stem Cell Aging Leukemia and Lymphoma (SALL)
Rok vydání: 2016
Předmět:
Resource
Epigenomics
0301 basic medicine
False discovery rate
Multiple Sclerosis
BLOOD
Statistics as Topic
Cell type specific
DNase I hypersensitive sites
Genome-wide association study
Computational biology
Biology
ENCODE
General Biochemistry
Genetics and Molecular Biology

03 medical and health sciences
SDG 3 - Good Health and Well-being
Humans
REGULATORY DNA
Epigenetics
EPIGENETIC SIGNATURE
Molecular Biology
GeneralLiterature_REFERENCE(e.g.
dictionaries
encyclopedias
glossaries)

Genetics
SJOGRENS-SYNDROME
epigenetics
histone marks
Stem Cells
ASSOCIATION
bioinformatics
DNA Methylation
epigenome-wide association study
CANCER
Disease etiology
FALSE DISCOVERY RATE
RHEUMATOID-ARTHRITIS
030104 developmental biology
Organ Specificity
Karyotyping
DNA methylation
WIDE DNA METHYLATION
NAIVE CD4+T CELLS
Software
Genome-Wide Association Study
Signal Transduction
Zdroj: Breeze, C E, Paul, D S, van Dongen, J, Butcher, L M, Ambrose, J C, Barrett, J E, Lowe, R, Rakyan, V K, Iotchkova, V, Frontini, M, Downes, K, Ouwehand, W H, Laperle, J, Jacques, P E, Bourque, G, Bergmann, A K, Siebert, R, Vellenga, E, Saeed, S, Matarese, F, Martens, J H, Stunnenberg, H G, Teschendorff, A E, Herrero, J L, Birney, E, Dunham, I & Beck, S 2016, ' eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data ', Cell Reports, vol. 17, no. 8, pp. 2137-2150 . https://doi.org/10.1016/j.celrep.2016.10.059
Cell Reports, 17(8), 2137-2150. Cell Press
Cell Reports
Cell Reports, 17, 2137-2150
Cell Reports, 17, 8, pp. 2137-2150
Cell reports, 17(8), 2137-2150. CELL PRESS
ISSN: 2211-1247
DOI: 10.1016/j.celrep.2016.10.059
Popis: Summary Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and web-based tool for the analysis and interpretation of EWAS data. eFORGE determines the cell type-specific regulatory component of a set of EWAS-identified differentially methylated positions. This is achieved by detecting enrichment of overlap with DNase I hypersensitive sites across 454 samples (tissues, primary cell types, and cell lines) from the ENCODE, Roadmap Epigenomics, and BLUEPRINT projects. Application of eFORGE to 20 publicly available EWAS datasets identified disease-relevant cell types for several common diseases, a stem cell-like signature in cancer, and demonstrated the ability to detect cell-composition effects for EWAS performed on heterogeneous tissues. Our approach bridges the gap between large-scale epigenomics data and EWAS-derived target selection to yield insight into disease etiology.
Graphical Abstract
Highlights • Development of a tool for the analysis and interpretation of EWAS data • Identification of cell type-specific signals in heterogeneous EWAS data • Identification of cell-composition effects in EWAS • Compilation of eFORGE catalog of 20 published EWAS
Breeze et al. develop a tool for the analysis and interpretation of EWAS data. The eFORGE tool identifies cell type-specific, disease-relevant signals in heterogeneous EWAS data and can also identify cell-composition effects. Explore consortium data at the Cell Press IHEC webportal at http://www.cell.com/consortium/IHEC.
Databáze: OpenAIRE