Pointwise convergence to initial data of heat and Laplace equations

Autor: Beatriz Viviani, Teresa Signes, Silvia Inés Hartzstein, Gustavo Garrigos Aniorte, José Luis Torrea Hernández
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Popis: Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1
Databáze: OpenAIRE