Stable recovery of noncompactly supported electromagnetic potentials in unbounded domain

Autor: Yavar Kian, Yosra Soussi
Přispěvatelé: Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E8 Dynamique quantique et analyse spectrale, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Tunis El Manar (UTM), ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Methods in the Applied Sciences
Mathematical Methods in the Applied Sciences, 2021, 44 (17), pp.13421-13447. ⟨10.1002/mma.7636⟩
Mathematical Methods in the Applied Sciences, Wiley, In press, ⟨10.1002/mma.7636⟩
ISSN: 1099-1476
0170-4214
DOI: 10.1002/mma.7636
Popis: We consider the inverse problem of determining an electromagnetic potential appearing in an infinite cylindrical domain from boundary measurements. More precisely, we prove the stable recovery of some general class of magnetic field and electric potential from boundary measurements. Assuming some knowledge of the unknown coefficients close to the boundary, we obtain also some results of stable recovery with measurements restricted to some portion of the boundary. Our approach combines construction of complex geometric optics solutions and Carleman estimates suitably designed for our stability results stated in an unbounded domain.
Databáze: OpenAIRE