Identification of Cinnamic Acid Derivatives As Novel Antagonists of the Prokaryotic Proton-Gated Ion Channel GLIC

Autor: Pierre-Jean Corringer, Arnaud Blondel, Claire Colas, Sandrine Delarue-Cochin, Justine Marteaux, Catherine Van Renterghem, Delphine Joseph, Thérèse E. Malliavin, Marie S. Prevost
Přispěvatelé: Récepteurs Canaux - Channel Receptors, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Cellule Pasteur UPMC, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Pasteur [Paris], Chimie des Substances Naturelles, Université Paris Sud, Biomolécules : Conception, Isolement, Synthèse (BioCIS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine, Bioinformatique structurale - Structural Bioinformatics, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), We thank the French Ministry of Superior Education and Research for the grant to M.S.P, We are indebted to M. Delarue and L. Sauguet for the gift of the 2.4 Å GLIC structure before its publication for the a posteriori docking and, together with F. Poitevin, for helpful comments. We are grateful to K. Leblanc for HPLC analyses and mass measurements., Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Pasteur [Paris] (IP), Université Paris-Sud - Paris 11 (UP11)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2013
Předmět:
Models
Molecular

MESH: Hydrogen-Ion Concentration
Patch-Clamp Techniques
Databases
Factual

Xenopus
01 natural sciences
Drug Discovery
MESH: Animals
MESH: Xenopus
MESH: Bacterial Proteins
0303 health sciences
MESH: Protein Multimerization
Chemistry
Stereoisomerism
MESH: Cyanobacteria
Hydrogen-Ion Concentration
Ligand (biochemistry)
Transmembrane protein
MESH: Ligand-Gated Ion Channels
Molecular Medicine
Ligand-gated ion channel
Female
Protons
Signal transduction
MESH: Models
Molecular

MESH: Caffeic Acids
Stereochemistry
GLIC
Cyanobacteria
MESH: Oocytes
03 medical and health sciences
Caffeic Acids
Bacterial Proteins
MESH: Computer Simulation
MESH: Patch-Clamp Techniques
Animals
Computer Simulation
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Binding site
030304 developmental biology
Binding Sites
010405 organic chemistry
[SCCO.NEUR]Cognitive science/Neuroscience
Gated Ion Channel
Mutagenesis
Ligand-Gated Ion Channels
MESH: Stereoisomerism
MESH: Databases
Factual

0104 chemical sciences
MESH: Cinnamates
MESH: Binding Sites
Cinnamates
Oocytes
MESH: Protons
Protein Multimerization
MESH: Female
Zdroj: Journal of Medicinal Chemistry
Journal of Medicinal Chemistry, American Chemical Society, 2013, 56 (11), pp.4619-4630. ⟨10.1021/jm400374q⟩
Journal of Medicinal Chemistry, 2013, 56 (11), pp.4619-4630. ⟨10.1021/jm400374q⟩
ISSN: 1520-4804
0022-2623
DOI: 10.1021/jm400374q
Popis: International audience; Pentameric ligand gated ion channels (pLGICs) mediate signal transduction. The binding of an extracellular ligand is coupled to the transmembrane channel opening. So far, all known agonists bind at the interface between subunits in a topologically conserved "orthosteric site" whose amino acid composition defines the pharmacological specificity of pLGIC subtypes. A striking exception is the bacterial proton-activated GLIC protein, exhibiting an uncommon orthosteric binding site in terms of sequence and local architecture. Among a library of Gloeobacter violaceus metabolites, we identified a series of cinnamic acid derivatives, which antagonize the GLIC proton-elicited response. Structure-activity analysis shows a key contribution of the carboxylate moiety to GLIC inhibition. Molecular docking coupled to site-directed mutagenesis support that the binding pocket is located below the classical orthosteric site. These antagonists provide new tools to modulate conformation of GLIC, currently used as a prototypic pLGIC, and opens new avenues to study the signal transduction mechanism.
Databáze: OpenAIRE