Shrink pattern of breast cancer after neoadjuvant chemotherapy and its correlation with clinical pathological factors

Autor: Xinhua Yang, Yi Zhang, Jun Jiang, Xiaowei Qi, Shushu Wang, Linjun Fan, Qing-Qiu Chen
Jazyk: angličtina
Předmět:
Zdroj: World Journal of Surgical Oncology
ISSN: 1477-7819
DOI: 10.1186/1477-7819-11-166
Popis: Background Breast conservation therapy (BCS) after neoadjuvant chemotherapy (NCT) can improve patients’ quality of life. Currently used intraoperative examination for negative margins may not be sufficient to detect microresidual foci, which are a risk factor for local recurrence. This study was conducted to investigate the shrinking pattern of breast cancer and residual tumors as a risk factor for BCS after NCT. Methods Ninety women with stage II or III invasive ductal carcinoma who achieved partial response after NCT with paclitaxel and epirubicin were enrolled. All patients had undergone modified radical mastectomy. One-half of the surgical specimens were subjected to subserial sectioning. Pathological changes of tumor bed and pericancerous tissues were examined with an optical microscope. The levels of estrogen receptors, progesterone receptors and HER2 were analyzed by immnohistochemical staining. Results The residual tumors were classified into three types according to their microscopic morphology: solitary lesion, multifocal and patchlike lesions, and main residual tumor with satellite lesions. Type I residual tumors were found in 55 patients (61%), type II in 30 patients (33%) and type III in 5 patients (6%). Types II and III were often associated with larger primary tumors. The types of residual tumors were not correlated with the status of hormone receptors or HER2. Conclusion Three types of residual tumors were observed after NCT. The solitary residual tumor is most common, but main residual tumors with satellite lesions are most likely to cause local recurrence after BCS. Subserial sectioning would improve the identification of microfoci and patient survival after BCS.
Databáze: OpenAIRE