Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

Autor: Yoshihiro Kishi, Tomonao Inobe, Masaharu Isobe, Nobuyuki Kurosawa, Megumi Yoshioka, Shun Matsuzawa, Haruki Kitamura, Yuka Wakata
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Scientific Reports
ISSN: 2045-2322
Popis: Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins.
Databáze: OpenAIRE