Examples of integrable and non-integrable systems on singular symplectic manifolds

Autor: Eva Miranda, Anna Kiesenhofer, Amadeu Delshams
Přispěvatelé: Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Observatoire de Paris, Université Paris sciences et lettres (PSL), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Universitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2015, 115, pp.89-97. ⟨10.1016/j.geomphys.2016.06.011⟩
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2016.06.011⟩
Popis: We present a collection of examples borrowed from celestial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization transformations, Appell's transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lowering its rank at certain points. The resulting geometrical structures that model these examples are no longer symplectic but symplectic with singularities which are mainly of two types: $b^m$-symplectic and $m$-folded symplectic structures. These examples comprise the three body problem as non-integrable exponent and some integrable reincarnations such as the two fixed-center problem. Given that the geometrical and dynamical properties of $b^m$-symplectic manifolds and folded symplectic manifolds are well-understood [GMP, GMP2, GMPS, KMS, Ma, CGP, GL,GLPR, MO, S, GMW], we envisage that this new point of view in this collection of examples can shed some light on classical long-standing problems concerning the study of dynamical properties of these systems seen from the Poisson viewpoint.
14 pages
Databáze: OpenAIRE