On the energy transport in internal transport barriers of RFP plasmas

Autor: M. Spolaore, P. Innocente, B. Momo, Emilio Martines, D. López-Bruna, Paolo Franz, David Terranova, Gianluca Spizzo, Rita Lorenzini, P. Piovesan, Alberto Alfier, G. V. Pereverzev, Alessandro Fassina, Fulvio Auriemma
Přispěvatelé: Lorenzini, R, Alfier, A, Auriemma, F, Fassina, A, Franz, P, Innocente, P, Lopez-Bruna, D, Martines, E, Momo, B, Pereverzev, G, Piovesan, P, Spizzo, G, Spolaore, M, Terranova, D
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Nuclear fusion 52 (2012). doi:10.1088/0029-5515/52/6/062004
info:cnr-pdr/source/autori:R. Lorenzini; A. Alfier; F. Auriemma; A. Fassina; P. Franz; P. Innocente; D. Lopez-Bruna; E. Martines; B. Momo; G. Pereverzev; P. Piovesan; G. Spizzo; M. Spolaore; D. Terranova/titolo:On the energy transport in internal transport barriers of RFP plasmas/doi:10.1088%2F0029-5515%2F52%2F6%2F062004/rivista:Nuclear fusion/anno:2012/pagina_da:/pagina_a:/intervallo_pagine:/volume:52
Nuclear Fusion
Popis: Single helical axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas feature an internal transport barrier delimiting the hot helical core region. The electron temperature jump across this region, and the related temperature gradient, display a clear relationship with the normalized amplitude of the secondary MHD modes. A transport analysis performed with the ASTRA code, taking into account the helical geometry, yields values of the thermal conductivity in the barrier region as low as 5 m2 s−1. The thermal conductivity is also related to the secondary mode amplitude. Since such amplitude is reduced when plasma current is increased, it is expected that higher current plasmas will display even steeper thermal gradients and hotter helical cores.
Databáze: OpenAIRE