Segmentation of Pathological Heart Sound Signal Using Empirical Mode Decomposition

Autor: Braham Barkat, Messaoud Benidir, Daoud Boutana
Přispěvatelé: Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Baverel, Myriam
Rok vydání: 2013
Předmět:
Zdroj: Proceedings of the 4th International Conference on Signal Processing Systems
ICSPS 2012
ICSPS 2012, Dec 2012, Kuala Lumpur, Malaysia. pp.1-5
IJCEE-International Journal of Computer and Electrical Engineering
IJCEE-International Journal of Computer and Electrical Engineering, International Academy Publishing (IAP), 2013, 5 (1), pp.26-29. ⟨10.7763/ijcee.2013.v5.655⟩
ISSN: 1793-8163
DOI: 10.7763/ijcee.2013.v5.655
Popis: International audience; The Phonocardiogram (PCG) is the graphical recording of acoustic energy produced by the mechanical activity of various cardiac. Due to the complicated mechanisms involved in the generation of in the PCG signal, it is considered as multicomponent non stationary signal. Empirical mode decomposition (EMD) allows decomposing an observed multicomponent signal into a set of monocomponent signals, called Intrinsic Mode Functions (IMFs). The goal of this paper is to segment some pathological HS signals into the murmurs related to cardiac diseases. EMD approach allows to automatically selecting the most appropriate IMFs characterizing the murmur using the noise only model. Real-life signals are used in the various cases such as Early Aortic Stenosis (EAS), Late Aortic Stenosis (LAS), Mitral Regurgitation (MR) and Aortic Regurgitation (AR) to validate, and demonstrate the effectiveness of the proposed method.
Databáze: OpenAIRE