Incompressible immiscible multiphase flows in porous media: a variational approach

Autor: Thomas Gallouët, Léonard Monsaingeon, Clément Cancès
Přispěvatelé: Reliable numerical approximations of dissipative systems (RAPSODI ), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Département de Mathématiques [Liège], Université de Liège, Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-13-JS01-0007,GEOPOR,Approche géométrique pour les écoulements en milieux poreux: théorie et numérique(2013), ANR-12-MONU-0013,ISOTACE,Systemes d'Interactions, Transport Optimal, Applications a la simulation en Economie.(2012), ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Capillary pressure
Motion (geometry)
Space (mathematics)
01 natural sciences
constrained par-abolic system
35A15
Physics::Fluid Dynamics
Wasserstein gradient flows
Mathematics - Analysis of PDEs
35K65
35A15
49K20
76S05

Phase (matter)
Convergence (routing)
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
Mathematics - Optimization and Control
Multiphase porous media flows
49K20
Mathematics
Numerical Analysis
Applied Mathematics
010102 general mathematics
Mathematical analysis
35K65
minimizing movement scheme
010101 applied mathematics
constrained parabolic system
Optimization and Control (math.OC)
Compressibility
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Balanced flow
Porous medium
Analysis
Analysis of PDEs (math.AP)
76S05
Zdroj: Analysis & PDE
Analysis & PDE, Mathematical Sciences Publishers, 2017, 10 (8), pp.1845-1876. ⟨10.2140/apde.2017.10.1845⟩
Analysis & PDE, 2017, 10 (8), pp.1845-1876. ⟨10.2140/apde.2017.10.1845⟩
Anal. PDE 10, no. 8 (2017), 1845-1876
ISSN: 2157-5045
1948-206X
Popis: International audience; We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schemè a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.
Databáze: OpenAIRE