Contact variational integrators

Autor: Mats Vermeeren, Alessandro Bravetti, Marcello Seri
Přispěvatelé: Dynamical Systems, Geometry & Mathematical Physics
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Physics A: Mathematical and Theoretical, 55(44):445206. IOP PUBLISHING LTD
ISSN: 1751-8113
Popis: We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Surprisingly, this construction presents some interesting simplifications compared to the corresponding construction for symplectic systems. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.
Databáze: OpenAIRE